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Abstract 

The full structures of lithium chloroberyllophosphate 
sodalite, LiaCI(BePO4)3 (I), and lithium chloroberyllo- 
arsenate sodalite, Li4CI(BeAsO4)3 (II), as refined using 
X-ray powder data, are reported. These phases are briefly 
compared with other known MaX(ABOa)3-type sodalites. 

Comment 
The sodalite framework, exemplified by Na4CI(AISiO4)3, 
is built up from tetrahedral building blocks (e.g. SiO4 
and AIO4), linked via Si--O--A1 O-atom bridges. 24 of 
these units link together to form a truncated octahedral 
/3-cage, containing eight six-ring openings and six four- 
ring openings (Pauling, 1930). In sodalite, the/3-cages 
are built into a closely packed array and each sodalite 
cage is in contact with 14 neighbors: eight v/a six rings 
and six via four rings. The sodalite framework is partic- 
ularly versatile with respect to accommodating a wide 
variety of framework tetrahedral species and various 
guest cations and anions (Stucky et al., 1992). Typical 
zeolitic cation exchange (Stein, Ozin & Stucky, 1990) 
and dehydration/rehydration reactions (Felsche & Luger, 
1987) have been demonstrated for various sodalites. 

Two general types of sodalite structure may be distin- 
guished, based on the extra-framework contents of each 
/3-cage. Normal sodalites, of the formula M4X(AB04)3, 
contain four guest cations M and one anion X, which 
is located at the center of the /3-cage. Empty-cage 
sodalites, e.g. M3(n20)a_x(ano4)3, contain three guest 
cations and (up to) four water molecules in a de- 
fective cubane arrangement in the /3-cage. We have 
discovered varieties of both types of sodalite struc- 
ture during our recent investigations of new group 
2/12/15 molecular sieve structures: Na3(H20)4(ZnPO4)3 
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and Na3(H20)4(ZnmsO4)3, prepared using mild con- 
ditions [343 K, ambient pressure (Nenoff, Harrison, 
Gier & Stucky, 1991)], are empty-cage sodalites, while 
LiaBr(BePO4)3, prepared at high temperatures and pres- 
sures [823 K, ca 0.3447 GPa (Gier, Harrison & Stucky, 
1991)], is a normal sodalite. In this paper we describe the 
structures of two further normal sodalites, Li4Cl(BePO4)3 
and LiaCI(BeAsO4)3, and briefly compare them with 
other M4X(AB04)3 materials. 

Both L~CI(BePO4)3 and LiaCI(BeAsO4)3 adopt the 
typical P43n M4X(ABO4)3 normal sodalite structure, 
which shows complete 1:1 tetrahedral ordering of the Be 
and P/As species. Bond lengths and angles are typical of 
the chemical species concerned. In particular, the Li--O 
and Li--C1 contacts in each structure are virtually identi- 
cal. In both structures, the Li cation occupies a site near 
the inter-/3-cage six-ring window (site symmetry .3.) and 
is three-coordinate with the framework O atoms. Its fourth 
tetrahedral vertex is to the CI anion at the center of each 
/3-cage. The C1 anion bonds to four Li cations in a regular 
tetrahedron (CI- site symmetry: 23.). The six-ring envi- 
ronment in LiaCI(BePO4)3 is illustrated in Fig. 1. 

A key parameter in defining the geometry of the 
sodalite framework is the intertetrahedral atom angle 
T--O--7 '  (Taylor & Henderson, 1978): 127.0(2) in 
Li4CI(BePO4)3 and 123.4 (2) ° in LiaCI(BeAsO4)3, com- 
pared with 128.9 (2) in LiaBr(BePO4)3 (Gier, Harri- 
son & Stucky, 1991) and 125.6 (4) ° in LiaCI(A1SiO4)3 
(Beagley, Henderson & Taylor, 1982). In normal alu- 

© © 

Fig. 1. View showing the six-ring window environment in 
LiaCI(BePO4)3. The Li ÷ cation makes three bonds to the framework 
O atoms and a fourth tetrahedral vertex to the C1- species occupying 
the center of the/3-cage. (Arbitrary atom radii; O atoms represented 
as unlabeled plain circles.) 
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minosilicate sodalites, correlations may be observed 
between the sizes (ionic radii) of the cage species and 
the intertetrahedral angle (Taylor & Henderson, 1978): 
here, there are insufficient data to offer any similar 
general predictions for the beryllo(phosphate/arsenate) 
sodalites, but we observe that the larger arsenate group 
in LiaCI(BeAsO4)3 leads to a smaller T - - O - - T  bond an- 
gle than observed in its phosphate-containing congener, 
Li4CI(BePO4)3. This suggests that correlations between 

t h e  T - - O - - T  angle and unit-cell size (Taylor & Hender- 
son, 1978) may not be so clearly apparent when sodalites 
of different framework compositions are compared. 

A significant difference between LiaCI(A1SiO4)3 and 
Li4CI(BePO4)3 and Li4CI(BeAsO4)3 may be observed by 
comparing the L i - -O  bond lengths. In Li4CI(A1SiO4)3, 
L i - -O  = 2.09 (2) A, while in Li4CI(BePO4)3 and LiaC1- 
(BeAsO4)3 the comparable L i - -O  contacts are 1.928 (5) 
and 1.946 (6) A, respectively. This may indicate that sim- 
ple size-packing considerations are insufficient to ex- 
plain the structural trends between sodalites with differ- 
ent framework compositions, and that other effects, such 
as electronegativities, may also be significant in determin- 
ing crystal structure. 

The Li cation/six-ring O-atom interaction may be 
quantified further (Stucky et al., 1992) by defining a 
parameter 6(Li) (A), which denotes the displacement 
along the [111] direction, toward the center of the 
sodalite cage at (0,0,0), of the Li cation from the 
plane formed by its three near-neighbor O atoms in the 
sodalite six-ring: values of 0.69 for LiaCI(BePO4)3, 0.71 
for Li4Cl(BeAsO4)3, 0.89 for Li4CI(A1SiO4)3 and 0.60 A 
for Li4Br(BePO4)3 result. The 6 parameter is useful 
for comparing structural trends between different extra- 
framework species in different zeolites; for example, typ- 
ical 6 values of 1.3 ,~ result for sodium aluminosilicate 
sodalites, while for the Se site in hydrated sodium zeolite 
X, where a similar threefold sodium-framework O-atom 
coordination occurs, a 6 value of 1.0,4, is found. 

The sodalite T - - O - - T  angle is also significant in 
defining the area of the intercage six-ring window (Stucky 
et al., 1992) and the cage-center-to-cage-center separa- 
tion. The consequences for the resulting ion-exchange 
and spectroscopic behavior of these systems (Stucky et 
al., 1992) are extremely important, offering the possibil- 
ities of microengineering the physical properties of these 
materials, such as blue shifting or red shifting a semi- 
conductor band gap, based on the precise control of 
atomic separations of the guest species via controlled sub- 
stitutions of the framework tetrahedral atomS (Moran et 
al., 1994). 

Experimental 

Lithium chloroberyllophosphate sodalite, Li4CI(BePO4)3, and 
lithium chloroberylloarsenate sodalite, Li4CI(BeAsO4)3, were 
prepared by high-temperature/high-pressure methods, as 
described previously (Gier, Harrison & Stucky, 1991). In each 

case, a highly crystalline white powder was produced, which 
was suitable for full structure determination by the Rietveld 
method (Rietveld, 1969). 

Compound (I) 
Crystal data 

LhCI(BePO4)3 Z = 2 
Mr = 375.16 Dx = 2.409 Mg m -3 
Cubic Cu Ka radiation 
P-43n /z = 8.484 mm -1 
a = 8.0269 (3) A T = 298 (2) K 
V = 517.18 (4) tk 3 White 

Data collection 
Scintag PAD-X powder 

diffractometer 
0/0 powder scans 
Absorption correction: 

none 

1999 data points in the pro- 
cessed diffractogram 

2Omin = 20, 20max = 100 ° 
Wavelength of incident radi- 

ation: 1.54178 

Refinement 

Refinement on powder data 
points 

Rp = 0.103 
Rwp -- 0.131 
X 2 = 4.85 

130 reflections 
20 parameters 
w = lfir2(y) 

(A/o')max < 0.01 
Apmax = 0.6 e A -3 
Apmin = -0 .7  e A -3  
Atomic scattering factors 

from International Tables 
for X-ray Crystallogra- 
phy (1974, Vol. IV, Table 
2.2B) 

Table 1. Fractional atomic coordinates and isotropic dis- 
placement parameters (A~) for (I) 

x y z U~ 
Be(l) 1/4 0 1/2 0.016 (4) 
P(1) 1/4 1/2 0 0.0075 (7) 
O(1) 0.14281 (28) 0.41448 (30) 0.13778 (27) 0.0020 (9) 
Li(1) 0.1814 (10) 0.1814 (10) 0.1814 (10) 0.010 
el(l) 0 0 0 0.013 (2) 

Table 2. Selected geometric parameters (A, ° ) for  (I) 
Be(1)--O(1 i) 1.6114 (21) Li(l)--O(1) 1.928 (5) 
P(1)--O(1) 1.5603 (22) Li(1)--Cl(l) 2.523 (15) 

O(li.)--Be(1)--O(li.!.) 108.21 (8) Be(l~i)--O(1)--Li(1) 115.22 (13) 
O(P)--Be(1)--O(I'") 112.03 (16) P(1)--O(1)--Li(1) 117.84 (12) 
O(1)--P(1)--O(P v) 107.70 (8) O(1)--Li(1)--O(l i) 107.6 (4) 
O(1)--P(1)--O(l v) 113.07 (16) O(1)--Li(1)--Cl(1) 111.2 (4) 
Be(IVi)--O(1)--P(1) 126.95 (15) Li(1)--CI(1)--Li(l ~i) 109.471 

Symmetry codes: (i) z, x, y; (ii) ½ - z, y - ½, ½ - x; (iii) z, -x, 1 - y; 
(iv) ½ - x, ½ - z, - ½ + y; (v) x, 1 - y, -z; (vi) y, z, x; (vii) -x, -y,  z. 

Compound (II) 
Crystal data 

Li4CI(BeAsO4)3 
Mr = 507.01 
Cubic 
P'43n 
a -- 8.23685 (8) A 
v = 5 5 8 . 8 3  (2)  A 3 

Z = 2  
Dx = 3.013 Mg m -3 
Cu Ka radiation 
# = 13.688 mm -1 
r - -  298 (2) K 
White 

Data collection 
Scintag PAD-X powder 

diffractometer 
2571 data points in the pro- 

cessed diffractogram 
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0/0 powder scans 
Absorption correction: 

none 

Refinement 

Refinement on powder data 
points 

Rp = 0.072 
Rwp =0.101 
X 2 = 5.04 
200 reflections 
24 parameters 
W = l/or2 (y) 

20min -- 20, 20max = 120 ° 
Wavelength of incident radi- 

ation: 1.54178 A 

(A/a)max < 0.01 
Apmax = 0.9 e A -3 
Apmin = -0 .5  e A -3 
Atomic scattering factors 

from International Tables 
for X-ray Crystallogra- 
phy (1974, Vol. IV, Table 
2.2B) 

Table 3. Fractional atomic coordinates and isotropic dis- 
placement parameters (,A,2) for  (II) 

x y z Uiso 
Be(l) 1/4 0 1/2 0.005 (3) 
As(I) 1/4 112 0 0.0046 (3) 
O(1) 0.13390 (31) 0.4066 (4) 0.14093 (32) 0.009 (2) 
Li(1) 0.1772(11) 0.1772(11) 0.1772(11) 0.017(5) 
CI(1) 0 0 0 0.018 (1) 
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Table 4. Selected geometric parameters (A, o) for  (II) 

le(1)--O(1 i) 1.6174 (24) Li(l)--O(l) 1.946 (6) 
As(1)--O(1) 1.6895 (29) Li(1)--CI(1) 2.528 (16) 
O(li.)--Be(1)--O(li.i) 107.97 (9) Be(lVi)--O(l)--Li(1) 120.12 (17) 
O(ll)--Be(1)--O(1 m) 112.51 (19) As(l)--O(l)--Li(1) 116.36(13) 
O(l)--As(l)--O(l iv ) 108.69 (9) O(1)--Li(l)--O(1 ~) 107.4 (5) 
O(l)--As(l)--O(l v) 111.05 (18) O(1)--Li(1)--Cl(1) 111.5 (5) 
Be(lvi)--O(1)--As(l) 123.43 (19) Li(1)--Cl(1)--Li(l ~ii) 109.471 

Symmetry codes: (i) z, x, y; (ii) ½ - z, y - ½, ½ - x; (iii) z,-x, 1 - y; 
(iv) ½ - x, ½ - z, - ½ + y; (v) x, 1 - y, -z; (vi) y, z, x; (vii) -x, -y,  z. 

Both crystal structures were optimized by X-ray Rietveld 
refinements (Rietveld, 1969), following a similar procedure 
to that described by Gier, Harrison & Stucky (1991). Start- 
ing unit-cell parameters were obtained by unit-cell powder 
refinements and starting atomic coordinates were obtained 
from the structure of LiaBr(BePO4)3 (Gier, Harrison & Stucky, 
1991), with C1 substituting Br and As replacing P in the 
Li4CI(BeAsO4)3 phase. The Rietveld refinements progressed 
smoothly in each case, with the usual profile parameters (scale 
factor, zero-point error, pseudo-Voigt peak-width variation 
parameters, six-term Fourier-cosine series background coeffi- 
cients and unit-cell parameters) treated as least-squares variables 
in the usual fashion. All atom positions and isotropic displace- 
ment factors were refined. No corrections for preferred orienta- 
tion, extinction or absorption were applied. 

Program(s) used to refine structures: GSAS (Larson & Von 
Dreele, 1990). Molecular graphics: ORTEPII (Johnson, 1976), 
with local modifications. 
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Abstract 
Aluminium hydrogen phosphite,  A12(HPO3)3, and gal- 
l ium hydrogen phosphite,  Ga2(HPO3)3, were prepared 
hydrothermal ly  in Teflon-lined steel autoclaves at 473 K. 
The compounds are isostructural with Fe2(HPO3)3. The 
structures consist of  very distorted MO6 octahedra which 
share faces to form a dimeric M209 unit. These dimers are 
interlinked by the phosphite  groups, which l ink three dif- 
ferent dimers into a three-dimensional  arrangement hav- 
ing small proton-l ined channels  rtmning parallel to the c 
axis. 

Lists of raw X-ray powder data and complete geometry have been 
deposited with the British Library Document Supply Centre as Supple- 
mentary Publication No. SUP 71662 (13 pp.). Copies may be obtained 
through The Technical Editor, International Union of Crystallography, 5 
Abbey Square, Chester CH1 2HU, England. [CIF reference: BR1052] 
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Comment 
Aluminium and gal l ium phosphates have received much 
attention in recent years because of  their capacity to form 
framework structures with topologies similar  to those of  
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